1国内外GCB的使用和发展状况
美国、英国、法国等发达国家在电厂设计中,其大容量发电机出口均考虑装设GCB。目前国内电厂采用GCB或发电机负荷开关电厂主要有天津蓟县、辽宁绥中、伊敏电厂、沙角C电厂(3×600MW)、上海外高桥电厂(2×900 MW)、天津盘山(2×600 MW)、葛洲坝水电厂、二滩水电厂、李家峡、天生桥等工程。过去GCB主要在水电工程和核电工程被广泛采用,近年来随着我国电力系统大电网、大机组、超高压的发展,怎样简化电厂的运行操作,提高机组的可用率以及提高系统安全性和稳定性等问题越来越被得到重视,而GCB优越的特性完全可以满足这些要求。
目前国内制造商还没有能力生产与600 MW等级大容量机组配套的GCB,国外也仅有ABB、GEC-ALSTHOM、MITSUBISHI等几家知名大公司有能力生产(主要技术参数详见表1)。GCB型式主要有少油型、空气型、SF6气体型和真空型。少油型GCB如沈阳高压开关厂20世纪60年代生产的SN3、SN4等,额定电流为5000~8000 A,额定开断电流为58 kA。空气型GCB,如法国A-A公司生产的PKG2型额定电压为36 kV,额定电流11000 A,额定开断电流58 kA,该种断路器主要存在是产品体积大、噪声响、缺乏中等容量断路器等缺点,在我国葛洲坝水电厂有使用,运行情况良好。随着电力设备制造技术的发展,20世纪80年代ABB等公司推出以SF6气体为灭弧介质的GCB,它运用SF6自灭弧原理,当动触头分开时产生电弧来加热SF6气体,使其膨胀形成熄弧所需气体,同时电流流过固定触头内的线圈产生磁场,引起电弧旋转分离,保证荷载触头与灭弧触头正常工作。SF6型GCB目前在国内外电厂有大量的使用,它额定电流可达24000 A,开断能力160 kA,而且结构紧凑,故障率更低(<0.3%),还可以集成CT、PT、接地开关等设备,成为多功能的组合电器。
综上所述,目前国外GCB的技术发展十分迅速,各大公司竞相开发革新技术,从原来的少油型向SF6型和真空型断路器发展,体积越来越小,额定电流和开断电流越来越大,机械寿命高达10000次以上,随着研发能力及制造技术的提高,GCB配置保护将更趋完善,可靠性更高故障率更低。
2装设GCB技术分析
安装在发电机出口的低电压、大电流断路器,其作用可谓举足轻重。以前由于发电机巨大的额定电流和短路电流以及开断电流的直流分量大,使得GCB制造困难,造价也甚高。考虑技术和经济因素,除小容量机组的发电机出口设置少油断路器外(单机容量200 MW以下),一般大机组(单机容量200 MW及以上)大都采用发电机—变压器组单元接线,尽量使用离相封闭母线不装出口断路器和隔离开关。近年来,随着GCB制造质量和技术的进步,价格不断降低,而如何提高系统的安全稳定性将越来越得到重视。下面就发电机出口设置断路器的优越性作一分析。
2.1提高系统安全性和稳定性
200 MW及以上的机组采用的发电机与变压器组的单元接线方式的优点在于省去了GCB,同时也省去了相应的继电保护。但是这种简化的接线方式却使得发电机、变压器和系统的稳定运行在很大程度上要取决于主变高压侧的高压断路器运行可靠性的影响。当高压断路器在正常运行中,在执行解列或并车操作时、在事故状态下的动作过程中,如果发生一相或二相断路器因拒动、误动或断口绝缘击穿而导致非全相分、合闸状态时,则电网的安全稳定运行将会受到严重的威胁,极有可能因非全相运行而造成变压器绝缘损坏甚至起火烧毁,发电机转子因负序电流作用而使绝缘损坏甚至起火烧毁、系统稳定性遭受破坏而解列造成大面积停电等重大事故的发生。国内发电厂已发生过不少类似事故,如:某电厂因2号炉故障停机检查,运行人员操作2号机主变断路器跳闸时发现断路器A相拒分,在升压站手跳未获成功后,跳母联断路器将2号机主变与系统解列,造成非全相运行时间长达8 min,引起2号机转子烧毁。又如石洞口二厂2号机作逆功率试验时,2号机逆功率保护动作,同时引起主变高压侧并联的断路器三相分闸。因一台断路器未能分闸到底,造成断路器非全相运行,导致电厂另一台运行的600 MW机组、电网4条500 kV线路、3条220 kV线路、黄渡变的一台500 kV变压器及一台220 kV变压器先后跳闸。
2.2保护发电机及主变压器
当发电机带不平衡负荷运行、内部或外部发生不对称短路时均会对发电机产生很严重的机械和热应力,这种故障电流及其非全相运行的负序分量所引起的热应力加在发电机转子的阻尼绕组上,会产生异常的高温而使发电机转子严重受损。除此以外,高压断路器的合、分闸不同期,避雷器的损坏,架空线或GIS连接套管上行波反射造成的接地故障都会对发电要造成影响,GCB可以迅速切除这些故障,使得发电机免遭损坏。但如果没有装设GCB,发电机会持续提供不平衡负载给故障点,直到灭磁装置起作用。由于灭磁过程往往会持续几秒钟时间,甚至会超过10 s,从而导致发电机严重的损坏。
2.3提高保护选择性
当发电机侧发生故障时,GCB动作将故障点与系统隔离,避免了厂用电事故切换,简化了厂用电源的控制保护接线,降低了保护动作的联锁复杂性。当主变压器侧故障时,GCB可以迅速切除,使得发电机、主变压器和厂用高压变压器处于各自独立的保护范围内。
2.4方便调试和改善同期条件
GCB之所以能执行机组所需的全部操作任务,是因为它的位置处在回路中最恰当的地方,可以在不中断厂用电源的情况下将发电机断开,这样运行人员也减少了操作,避免了出错的可能性。机组投运进行短路试验时,可很方便地实现使用接地开关,否则要进行试验改接线,需投入额外的资金和时间,还有可能承担不必要的风险。
当电厂与电网的连接经由高压断路器通过主变压器受电时,同期点可由GCB来实现。对于同期操作来而言,应用主变高压侧断路器和GCB来进行同期操作有什么不同呢?国外最新的研究表明分别由高压断路器和GCB来实现同期操作和不同期操作所引起的延迟过零电流,对系统有着不同的影响,在反相同期操作过程中由于发电机转子的快速转动会产生的延迟过零电流,高压断路器在切断反相同期电流上能力非常有限,而GCB有足够的能力切断该电流。请登陆:高压开关网浏览更多信息
当同期在高压侧进行操作时,高压断路器可能会受到过电压作用。在污染较重的情况下,可能使高压断路器外部绝缘介质的闪络。再者,高压断路器一般都不是三相机械联动的,所以在同期操作过程中就有可能产生有较大不同期,这样会产生一个不平衡负载,给发电机带来严重的机械和热应力,从而损坏发电机。
当同期在发电机电压等级进行操作时,断路器电压等级的降低有助于防止外部绝缘闪络。用GCB实现同期操作完全在发电厂操控范围内,变电站操控可以不介入,从而不会产生任何操控责任上的重叠。
3装设GCB经济比较
随着主变压器制造质量的提高和GCB制造技术的进步,大容量机组启动(备用)电源的设置原则正在发生变化。当GCB的价格与启动/备用变、高低压侧开关等设备价格相比接近时,可以考虑不设专用的启动/备用变,而由主变通过厂用工作变提供起动电源的方案,把一次投资降低至最少。即便设置启动/备用变把GCB的投资考虑在内,在提高电厂可用率的同时,仍有相当可观的经济效益增加。下面就600 MW机组常用的两种电气接线方案作经济性比较:
方案一:采用发电机—变压器组接线,发电机出口不装设GCB,设置两台启动/备用变,变压器电源从10 km附近的200 kV变电所引接,两台启动/备用变采用2回线路,连接线采用架空线,变电所采用一个半断路器或双母线接线。当高压厂用变压器故障或检修时,厂用电源由启动/备用变提供。其主接线示意图见图1:
方案二:采用发电机—变压器组接线,发电机出口装设GCB,当机组启动和正常停机时,厂用电源由系统通过主变压器倒送供给。设一台事故停机备用变,备用变压器电源从10 km附近的220 kV变电所引接,连接线采用架空线,变电所采用一个半断路器或双母线接线。其主接线示意图见图2。
(1)可利用率比较
方案一、二主接线中各元件可靠性数据采用国际大电网会议公布的数据,计算结果见表2。请登陆:高压开关网浏览更多信息
由上表可知,方案二较方案一年平均可利用率提高了0.69%,年平均故障时间减少60.4 h,装设GCB将可以产生明显的经济效益。
(2)初期投资比较
根据对方案一、二的初期投资计算比较(见表3),方案二比方案一初期投资需大约增加630万元:
(3)运行收益分析
依据可利用率的计算结果,平均故障时间方案二较方案一少60.4 h,如机组年运行小时数假设6000 h,那么每年机组可以多发电达49640 k W,扣除6%的厂用电量,每年上网电量可增加4666.16万度,上网电价按0.34元/kW·h,电厂年收入可增收1586.5万元,因此方案二运行收益显著,能较快的收回初期投资。
(4)故障停电损失分析
根据有关文献统计,500 kV主变压器的故障率为2次/100台·年,如运行小时数按照6000 h/年,发电利润按照0.14元/kW·h计算,GCB寿命时间为20年,如采用方案二电厂每年将可以减少停电损失费为:0.02×2×6000/8760×20(177× 24-1187)×60×0.14×0.8(故障率×2台主变×年运行小时数×使用年限×(无GCB故障修复天数×24 h-GCB故障恢复时间)×600 MW×发电利润×(GCB起作用的)此类故障率)=11271.4万元。显而易见,该项收益远远大于初期投资的差异 |